中国电气传动网

第一电气传动平台



总访问量:316047

关键词搜索:

  • 变频器故障
  • 电动机
  • PLC系统
  • 交换机
  • 工业机器人
  • 步进电机
  • 工业4.0
  • 数控机床
  • PLC
  • 机器视觉

扫一扫

了解更多

共模电感究竟有什么存在的意义?

   日期:2019-09-23     浏览:21    评论:0    
核心提示:共模电感是两个绕组分别接在零线和火线上,两个绕组同进同出,滤除的是共模信号。需要分别在零线和火线上的两个完全相同的信号他们都通偶合和地形成回路。在CAN节点的设计中,我们通常为了总线的通讯更为可靠,为CAN接口增加各种器件,但实际并非所有应用都需要,过多防护不仅增加成本,而且器件的寄生参数必然影响信号质量。本文将简单介绍共模电感用于总线的作用。

共模电感是两个绕组分别接在零线和火线上,两个绕组同进同出,滤除的是共模信号。需要分别在零线和火线上的两个完全相同的信号他们都通偶合和地形成回路。在CAN节点的设计中,我们通常为了总线的通讯更为可靠,为CAN接口增加各种器件,但实际并非所有应用都需要,过多防护不仅增加成本,而且器件的寄生参数必然影响信号质量。本文将简单介绍共模电感用于总线的作用。

我们在实际应用中看到许多CAN产品会使用共模电感,但在常规测试中却看不到它对哪一项指标有明显改善,反而影响波形质量。许多工程师为了以防万一,确保可靠,会对CAN增加全面外围电路。CAN芯片已经有很好的抗静电,瞬态电压能力,有些收发器本身也有很好的EMC性能,我们在应用中可根据设计要求逐个增加防护、滤波等外围。对于CAN总线要不要加共模电感,我们主要从电磁兼容方面考虑。

共模电感

先介绍共模干扰,图1、图2分别给出了差模和共模干扰及其传输路径。图中的驱动器及接收器为差分信号传输,类似CAN总线。差模干扰产生于两条传输线之间,共模干扰则在两条线中同时产生,其电势是以地为参考。

差模干扰及传输路径

共模干扰及传输路径

共模电感是在一个磁环的上下两个半环上,分别绕制相同匝数但绕向相反的线圈。共模干扰是相同的,所以在磁环中形成的磁力线相互叠加,电感阻抗大从而起到衰减干扰的作用。对于差模信号在磁环中形成的磁力线是相互抵消的,并没有抑制作用,仅有线圈电阻及很小的漏感对差模信号有略微影响。共模电感本质上是一个双向滤波器,一方面滤除信号线上的共模信号干扰,另一方面抑制信号线本身不向外发出电磁干扰。图2中的干扰信号则能很好地被共模电感抑制,而差分信号则几乎无影响。

CAN总线特性

CAN收发器内部CANH、CANL分别为开源,开漏输出形式,驱动电路如图3所示。这种方式可以使总线轻松实现显性电平的驱动,而隐性电平则通过终端电阻放电来实现。

CAN收发器驱动电路

总线固有的差分传输形式使得CAN对于共模干扰有很好的抑制能力,如图4所示,通过CANH、CANL相减可很好地消除来自外部的共模干扰,但CANH、CANL并非理想对称,快速上升的跳变沿,这些均会带来EMC问题。我们通过示波器看总线波形很完美,测试静电,EFT,浪涌,传导骚扰抗扰均无异常。但测试传导发射,则不能满足限值要求,看起来很正常的总线实际却向外在发送传导干扰。

CAN传输波形

为什么要加共模电感?

对于CAN接口的EMC问题,除了选用更好性能,符号要求的CAN收发芯片,另一种简单的方法就是对CAN接口增加外围,共模电感是一种很好的选择。在现有汽车电子CISPR25标准中,对传导骚扰限值有很严格要求。许多CAN收发器均会超过限值。如图5分别为按照车规限制测试增加和不加共模电感的CAN接口传导骚扰,共模电感值为51μH,可以看到在各个频段下对噪声改善较为明显,测试结果仍有很大裕量。

传导骚扰测试

共模电感对降低传导骚扰有明显作用,可帮助我们快速通过测试要求,满足现有汽车用要求,但总线增加共模电感也会带来两个问题:谐振和瞬态电压。共模电感不可避免地会有寄生电感,直流电阻,考虑总线节点数,通信距离等因素,会引起谐振,影响总线信号质量,如图6,绿色波形为增加共模电感的总线波形,信号下降沿已有明显的谐振。另外,共模电感感量较大,且直接节在收发器接口,实际应用中出现短路,热插拔等状态会使共模电感两端产生瞬态高压,严重时会直接损坏收发器。

增加共模电感的CAN波形

总结

共模电感用于总线的优缺点较为明显,它可以滤除信号线的共模电磁干扰,衰减差分信号高频部分,抑制CAN接口自身向外发出的电磁干扰,在传导骚扰方面有很好地改善作用,但应用仍要考虑其带来的谐振与瞬态电压,这些在长距离,多节点通讯中对总线信号质量是不利的,对于一般工业应用对传导发射并无严格要求,因此可不增加共模电感。


 
点赞
 
更多>同类智造百科
0相关评论



版权与免责声明:

① 凡本网注明"来源:中国电气传动网"的所有作品,均由本网编辑搜集整理,并加入大量个人点评、观点、配图等内容,版权均属于中国电气传动,未经本网许可,禁止转载,违反者本网将追究相关法律责任。

② 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,我们将在您联系我们之后24小时内予以删除,否则视为放弃相关权利。

推荐图文
推荐智造百科
点击排行